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Abstract 

In this volume, Steffe, Liss, and Lee discuss a sequence of reorganizations and 

accommodations that construct schemes of intensive quantity from numerical schemes. In 

this sequence, the ideas of "iterable unit" and "partitioning" feature prominently. 

However, Steffe et al. also acknowledge some limitations of their sequence, in particular 

in dealing with notions of "all comparisons" and "any but no particular" state. In this 

reply, I use data from two high school students and a high school teacher to propose that 

ideas of "any" and particularly "all" states are built from a yet to be defined system of 

"smooth" schemes based in forming images of change in experiential time that is separate 

from but coordinated with "chunky" schemes based in iteration and partitioning. 
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Beside the Iterable Unit: Reply to Steffe et al. 

Steffe Liss and Lee's paper in this volume (Steffe, Liss II, & Lee, in-press) is an 

excellent illustration of the necessity of a distributive partitioning scheme in the 

construction of intensive quantity. Steffe et al. also say however that this scheme cannot 

be sufficient: "But in no way would such a scheme be sufficient in the construction of 

intensive quantity, because a concept of intensive quantity seemingly involves not two 

fixed states, but a variable state that symbolizes all comparisons" (p. 27). In this reply I 

discuss the idea that a distributive partitioning scheme, although necessary, is not 

sufficient, and point out areas that serve as opportunities for future research.  

The theme in this reply will be the problem identified by Steffe et al. above: 

constructing a variable state that symbolizes all comparisons. The problems of "variable" 

and "all" or "any" state come up repeatedly in Steffe's paper, particularly when discussing 

the transition from a distributive partitioning scheme to a recursive distributive 

partitioning where "that any but no particular partition can be conceptualized to establish 

[equivalent] ratios" (pp. 18, emphasis added), and the related idea of an extensive 

quantitative variable as "the potential result of measuring a varying quantity at any but no 

particular time" (p. 4, emphasis in original). In this reply I will propose the idea that 

these notions of "all" or "any" depends on images of continuous variation constructed 

separately from the schemes Steffe describes. In particular, I argue that that these images 

depend on the absence of an iterable unit, and the images are used in coordination with a 

separate system of schemes built from the iterable unit that Steffe describes, hence the 

title "beside the iterable unit." 

Chunky and Smooth 
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Before we begin, I need to build some definitions. By "image," I mean image in 

the sense that Thompson & Thompson (1992) describe as imagined or anticipated actions 

on an object. Thompson & Thompson attribute three types of images to Piaget (1967): 

briefly summarized as (i) image as object1, (ii) image as state, and (iii) image as 

transformations. Of particular interest are the latter two of the three types of images that 

Thompson & Thompson attribute to Piaget: image as an outcome of an action performed 

on an object (image as state), or as a fully dynamic and mobile image in which the 

transformations, not the object or its states, are the focus (image as transformations). 

Two other terms that I wish to define are "chunky" and "smooth" and their 

companion terms "chunk," "chunky/smooth perception," "chunky/smooth reasoning," and 

"chunky/smooth variation." These terms emerged as ways of making sense of the 

behavior of students working in dynamical systems (Castillo-Garsow, 2010, 2012) and as 

ways to characterize the distinctions between the Confrey (Confrey & Smith, 1994, 1995) 

and Thompson (Saldanha & Thompson, 1998; Thompson, 2002, 2008a) styles of 

covariation The distinction between "chunky" and "smooth" is inspired in part by the 

distinction between path-semantics and state-change semantics in linguistic studies of 

time (Bohnemeyer, 2010) 

By chunky I mean involving a completed change. Chunky reasoning is forming an 

image of completed change, analogous to image as state described above. Chunky 

variation is forming an image of completed change of a numerical object such as a 

quantity or variable.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  This is a particularly poor characterization of the nuances of the first type of image, but 
it will suffice for the present discussion, and I invite you to read the cited papers for 
details	  
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By smooth I mean involving a change in progress. Smooth reasoning is forming 

an image of dynamic change in progress, analogous to the image as transformations 

described above. Smooth variation is forming an image of change in progress of a 

numerical object such as a quantity or variable. 

As a metaphor: consider an animated film. An animator drawing the film would 

perceive each frame as a state of the characters in the frame. Characters change location 

and position from frame to frame without passing intervening states. However when the 

film is watched, these individual frames create an illusion of motion, where now the 

character is imagined to pass through the intervening space. If the animator were to break 

this illusion by, for example, having a character appear to wave their arm through a solid 

wall, the viewers would see that as exception. This example of the animator vs. the movie 

viewer may be thought of as chunky perception vs. smooth perception. Chunky vs. 

smooth reasoning may be thought of as constructing an image (in the above sense) of a 

dynamic situation. If we imagine a bungee jumper jumping off of a bridge, we can 

imagine viewing the jump as a series of frames or snapshots (chunky), or we can imagine 

viewing a jump as a played movie or an event in progress --- one that is changing 

continuously as we experience imagining it (smooth). Chunky or smooth variation would 

be when we take a quantity that we can measure about the situation and apply it to the 

image. For example, in the chunky image of the bungee jumper, we might imaging 

measuring time as the number of frames of the movie that have passed. In the smooth 

image of the bungee jumper, we might imagine time as a running stopwatch counting the 

number of seconds that have passed since the bungee jumper jumped off the bridge, 

passing through every real valued number of seconds in-between; however this example -
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-- used to highlight the differences between chunky and smooth --- is not an accurate 

characterization of pure smooth variation, which I will discuss in more detail later. 

A chunk is defined an imagined or anticipate completed change. A chunk may 

become an iterable unit. For students who have the types of partitioning schemes Steffe 

describes, chunks can be subdivided. At three levels of units, the result of a subdivided 

chunk is another chunk, or as Steffe et al. put it "One-seventh is said to be freed from the 

unit segment of which it is a part and so it can be used as an iterable unit in the sense that 

the unit of one is an iterable unit" (p. 13, this volume). At two levels of units such as the 

splitting scheme, Steffe et al. also describe iterating behavior as part of reconstructing the 

imagined partition, and so I would also characterize this type of incomplete iterable unit 

as a chunk. 

Pure smooth reasoning (and pure smooth variation) occurs in the absence of 

chunks. As such, the example of counting seconds above is not an example of pure 

smooth variation, because the stopwatch is imagined to be marking off units of 1. Rather, 

this can be thought of as an example of a type of "hybrid" variation, in which smooth 

variation (change in progress) generates a chunk (iterable unit seconds). This "using 

smooth to consider chunks2" can be thought of as the initial stage of the hybrid variation 

described by Thompson  (Saldanha & Thompson, 1998; Thompson, 2008b, 2013) prior 

to engaging in recursive partitioning. 

Because it must occur in the absence of chunks, pure smooth variation is 

qualitative in the sense that it is numerical without attention to the actual numbers 

generated. This might occur if, as we imagine the bungee jumper, we imagine that we 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  Thanks go to Kevin Moore for this name	  
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could measure the time since the jump, and that it could be measured in a unit such as 

seconds, and that as the jump progresses, that number is getting larger, but at no point do 

we imagine what that value actually is. This image can be likened to turning around a 

stopwatch so that we cannot read the display and the particular numerical values. We 

imagine time passing the numbers increasing without giving particular preference to a 

single unit such as seconds over any other unit such as minutes or Planck time. No matter 

the choice of unit, time is passing and the number in that unit is increasing, and that is 

sufficient.  

The finger exercise described in Thompson's didactic objects paper (Lima, 

McClain, Castillo-Garsow, & Thompson, 2009; P. W. Thompson, 2002) provides another 

example of both categories of variation. Depending on how it is implemented, it might be 

thought of as an exercise in moving fingers to show increasing and/or decreasing 

quantities (pure smooth variation) or an exercise in moving fingers along a number line 

that has a beginning, and end, and increments (hybrid variation).  

Chunky and smooth should not be thought of as schemes in the sense that Steffe 

et al. use the term. They are simply not precise enough, and this paper should only be 

thought of as laying the groundwork for future research in this area. It may be helpful to 

think of chunky and smooth as categories used to describe schemes. For example, the 

schemes described by Steffe et al. in the paper fall in the chunky and hybrid categories. 

As categories, chunky and smooth are not mutually exclusive (as seen in the hybrid 

variation examples), and certainly not exhaustive. They may not even exhaust the space 

of schemes of change. 
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In brief, chunky variation may be thought of as a discrete and quantitative image 

of a dynamic situation based on an iterable unit, while smooth variation may be thought 

of as a continuous and qualitative image of a dynamic situation built with yet to be 

characterized tools other than the iterable unit. 

Smooth, Chunky and Student Development 

Chunky and smooth reasoning begin early in life. Pure smooth reasoning is 

demonstrated in children at least as early as object permanence (Glasersfeld, 1996; 

Piaget, 1954). When an infant tracks a moving object hidden behind a screen, the infant is 

engaging in pure smooth reasoning. Purely at the level of sensorimotor intelligence, 

he/she tracks the object's motion in a way that is anticipatory, transformative and updated 

in experiential time.  

In the experiment with water flowing from one bottle to another from Child's 

conception of time, Piaget (1969) describes a child, Ber, in the process of developing 

using smooth to consider chunky reasoning. Ber is able to trace the flow of water with 

his/her finger (a "kinetic interpretation of the flow process as a whole" (Piaget, 1969, p. 

15), and uses this image to order pairs of states (chunks) of the bottle, but is unable to 

reconstruct the entire sequence of states. However, despite the progression from smooth 

sensorimotor reasoning to chunky operational reasoning described in the bottle 

experiment, it would be a mistake to claim that chunky reasoning as a whole is more 

advanced or more desirable than smooth reasoning. It is merely more rigorous. 

One looking at the beginning and ending of mathematics classes might miss the 

importance of smooth reasoning to mathematics. In the beginning, as students are 

learning to count and partition, chunks play an incredibly important role (Steffe et al., in-
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press). At the end of mathematics classes (upper undergraduate), when students are 

learning to formalize ideas of number and limit, the arbitrarily small but not infinitesimal 

chunks ε and δ again become incredibly important. 

But there is a critically important stage in schooling, starting somewhere around 

pre-calculus and potentially extending to differential equations (depending on the 

student) when students must be able to distinguish the discrete and continuous, between a 

sequence and its limit, between the presence and absence of infinitesimal holes. As the 

teaching experiment in the next section will show, there are fundamental problems at this 

level where --- without the formal, chunky tools of epsilons and deltas --- the only way 

that students can make sense of these distinctions is by drawing upon tools of smooth 

reasoning. 

And far from being obsoleted by chunky reasoning, these smooth reasoning tools 

are ones that many professional mathematicians continue to use every day, as continuous 

dynamical systems such as differential equations remain an area of active research. This 

is not meant to imply that every student should or will learn differential equations. It is 

only meant to give a proof of concept example of how a neglected idea in traditional 

schooling (smooth reasoning) has an important mathematical use. Rather I suggest that 

smooth reasoning is critical to the forming the initial image (corresponding to Carlson & 

Bloom's (2005) orienting phase) of dynamical systems from at least the Algebra I & II 

level. One example of these types of systems is the parametric function activities 

described by Bishop and John (2008), in which an image of point moving along a path of 

all its possible values plays a critical role. 

The Teaching Experiment 
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This section will focus on the role of chunky and smooth in developing 

understandings of intensive quantities in the form of rates. I will use data from "Derek" 

and "Tiffany," two Algebra II students who participated in a teaching experiment in basic 

differential equations.  

Tiffany & Derek were high performing non-honors Algebra II students, who 

agreed to participate in a Steffe and Thompson (2000) style teaching experiment that 

followed Thompson's (2008a) construction of compound interest with the goal of 

teaching students the rate-proportional-to-amount property of exponential growth used in 

differential equations. The teaching experiment began with simple interest, and 

progressed through piecewise linear compound interest before introducing continuous 

compounding through the perspective of constant per-capita rate of change  (Castillo-

Garsow, 2010). 

Under this structure, simple interest is imagined as a family of linear functions in 

which the dollar per year rate of change of the line (the slope) is proportional to the initial 

value (dollars) of the function. Derek and Tiffany characterized this sort of simple 

interest relationship with the equation q(x,n)=n+.08(n)x, where n is the initial number of 

dollars invested, x is the number of years since investment, and 0.08 corresponds to the 

8% interest rate3 of the account.  

Compound interest was developed as an extension of simple interest. The idea 

was to introduce a competing bank that automatically reinvested (compounded) an 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3	  The use of the word "rate" here is in the financial sense and not the mathematical sense. 
Although it is possible to connect this meaning of rate to the slope of a linear function, 
the students were not aware of how to do this. In keeping with mathematical tradition 
henceforth, "rate" will always refer to a linear rate of growth such as dollars per year, and 
never to interest rate.	  
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investment every quarter of a year so that the dollar per year rate (slope) was no longer 

proportional to initial amount, but instead proportional to the amount at the beginning of 

the quarter. The students individually investigated this task for an initial investment of 

$500. Derek in particular imagined that over the first quarter of the year, the account 

grew linearly using the function q(x,500)=500+.08(500)x, and that over the second 

quarter, the account grew linearly but with a new dollar per year rate (a new slope) 

calculated from the amount in the account at the end of the first quarter (Figure 1). 

Tiffany's work was similar, although she focused much more on how to calculate the 

value at the ends of the quarters, rather than on imagining the account growing linearly 

in-between. Both students completed equations describing the behavior of the account 

(Figure 2). 

[Figure 1 about here] 

[Figure 2 about here] 

Following this investigation of compound interest, the students investigated phase 

plane representations of these accounts, in which instead of graphing account value with 

respect to time, the students graphed account rate (dollar per year growth) with respect to 

account value (Figure 3). 

[Figure 3 about here] 

After observing a linear relationship in the initial points of phase plane step 

function for compound interest, the students were asked to consider what would happen if 

compounding was happening all the time (Figure 4), and lastly to recreate a graph of 

account value with respect to time from the phase plane graph of continuous 

compounding. What follows is a description of both students based on data across the 
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teaching experiment, with the goal of explaining the dramatic differences in their abilities 

to complete this final task. 

[Figure 4 about here] 

Tiffany's partitioning 

The overall story of Tiffany, when viewed through the lens of Steffe's work, 

might be interpreted as an unsuccessful attempt to move Tiffany to recursive distributive 

partitioning, and when viewed from this perspective, it may be a useful story for 

identifying the critical ideas behind extending distributive partitioning to "any" or "all" 

partitions. 

Tiffany was a student who had a functional partitive fraction scheme (see 

Castillo-Garsow (2010) for a full treatment of Tiffany), but she greatly preferred to use 

iterative whole number schemes, as seen in Table 1. 

[Table 1 about here] 

On line 1 of Table 1, Tiffany appears to have claimed that three twelfths is a truer 

depiction of a quarter of a year than one quarter. By way of contrast lines 3 & 4, give us 

further insight into Tiffany's reasoning on Line 1. Although she used the words "one 

twelfth" she initially imagined "one month." It is not until lines 3&4 that she imagines 

one-quarter measured in a non-standard unit. Imagining one-twelfth as one month 

enabled her to recast time in terms of a new unit "months" and iterate those months to 

form a quarter as a whole number of month-sized chunks called one-twelfth, instead of as 

a piece of a year-sized chunk. This is why Tiffany said "three twelfths" was more 

"literally" a quarter of a year than one-fourth (Line 1). Although Tiffany was capable of 

partitioning a year into parts and keeping both the whole and the part in mind (lines 3-4), 
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Tiffany used this approach of recasting a fraction as one in a different unit whenever she 

could, disregarding the year and operating at one and two levels of units whenever 

possible4. 

Tiffany and speed 

In an attempt to push Tiffany towards using partitioning more often (using one 

quarter of a year at three levels of units rather than counting quarters, months, or days and 

dropping the year), the researchers used a context with which Tiffany was more familiar: 

speed. These discussions took on the same character as those in the "Over and Back" 

papers (P. W. Thompson, 1994; P. W. Thompson & Thompson, 1994; A. G. Thompson 

& Thompson, 1996), in that Tiffany initially took as speed-length perspective and was 

pushed to partition. 

[Table 2 about here] 

The question in line 3 Table 2 could be interpreted in a number of ways: For 

example, an number of faculty I have presented this to assumed Tiffany understood the 

question as "Is it possible to make a trip that consists entirely of starting at a stop, 

traveling one second at sixty-five miles per hour and then immediately stopping again?" 

However, this is not the way the question was intended, and it is not the way that Tiffany 

interpreted it. Rather Tiffany's "no" on line 4 is a claim that it is impossible to travel at 

sixty-five miles per hour for any time period less than an hour --- indicating that she was 

thinking in terms of iterated speed lengths. The "you would have to do" on line 4 is a 

reference to the partitioning strategy she was being taught. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4	  Although Tiffany did occasionally use improper fractions and sometimes appeared to 
have an iterative fraction scheme and three levels of units, her later difficulties suggest 
that in fact, she was just really good at changing units and was actually taking on three 
levels of units two at a time	  
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What is particularly interesting about this example over the speed-

length/partitioning examples in previous studies (P. W. Thompson, 1994; P. W. 

Thompson & Thompson, 1994; A. G. Thompson & Thompson, 1996) is that unlike the 

students in those studies, Tiffany is old enough to drive, and drives herself to school 

everyday. However, she does not answer Pat's question based on her driving experience, 

but instead based on the mathematical methods that she has been taught. For Tiffany in 

the context of a math class, it is impossible to travel for sixty-five miles per hour for just 

one second unless there is a method for calculating the distance traveled. This 

calculational approach causes Tiffany to misunderstand another question from the same 

session (Table 3). 

[Table 3 about here] 

In line 2 of Table 3, Tiffany assimilates the question to a partitioning scheme, and 

answers in terms of the calculations she expected she would have to do, thus correctly 

answering a different question than the one intended. Tiffany's difficulties with speed 

were not just problems with partitioning --- in fact, she partitions easily here. Her 

problems with speed were also stemmed from the calculational approach she took to the 

problem. At least for a time (Lines 1 & 2), her understanding of speed as a mathematical 

object was disconnected from her experience of speed as a driver. Tiffany did not seem 

capable of imagining ‘any’ and ‘all’ partitions because she had to actually attempt to 

partition 45 mph into so many miles per minute before she could answer a question about 

the first minute. 

Derek's partitioning 
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Derek, Tiffany's classmate, was also a high performing student in his non-honors 

Algebra II class, but unlike Tiffany, Derek had a fully formed fraction scheme capable of 

imagining "any" and "all" partitions. Although a full treatment of Derek requires more 

space than is reasonable here (see Castillo-Garsow (2010) for a more detailed 

description), the following example of the two students may help illustrate the differences 

in their partitioning schemes: contrast Tiffany (Table 4) and Derek's (Table 5) responses 

to the problem of using linear interpolation to estimate the value of a quarterly 

compounded account after point six years. The students were in separate sessions and did 

not hear each other's responses. 

[Table 4 about here] 

[Table 5 about here] 

In Table 4, Tiffany was working with units of "quarters" that she was counting as 

integers using two levels of units, however she was not able to coordinate these quarters 

with the remaining tenth of a year, since it required an additional level of units not part of 

her counting quarters behavior. When presented with a number that wasn't a whole 

number of quarters, Tiffany's reaction was that she needed to find how many units (how 

many quarters) the number was in order to figure out how much a year it was, indicating 

that she was no longer using year as a unit to which she could reference the remaining 

tenth. 

In contrast, Derek (Table 5) partitioned .6 years into .5 years and .1 years (used 

later). He then converted the 0.5 years to two quarters, without losing track of the original 

unit of years (three levels of units), and used the exponent “two” in the standard 
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compound interest equation. The .1 he kept in units of years and put in the linear 

interpolation function that "works with fractions of a year under a quarter." 

Derek's understanding of fraction partitioning came in part from an understanding 

of change that necessarily entailed continuous variation between quarters. As seen in 

lines 1 & 5 of Table 6, Derek used hybrid smooth variation in his understanding of the 

compound interest situation. He imagined that time passed continuously as he was 

thinking about the problem passing from zero through all the values in between on its 

way to a quarter of the year and that the account value in dollars was similarly growing in 

experiential time (as well as conceptual time) through all the values between $500 and 

the value at the end of the quarter. 

[Table 6 about here] 

My claim is that this image of hybrid smooth variation ("using smooth to consider 

chunks") facilitated Derek's thinking at three levels of units and allowed him to easily 

engage in partitioning .6 years into two quarters and remaining .1 years, while Tiffany 

who was engaged in chunky variation with chunks of a quarter could not accommodate to 

.6 years. Furthermore, I claim that the smooth component of Derek's hybrid variation is a 

way of thinking that he could separate from chunky variation and that pure smooth 

variation was something Derek used to make mathematical conclusions on its own, as we 

will see in the next section. 

Derek's smooth variation 

The examples from this section comes from Derek and Tiffany's work with the 

phase plane, specifically from the problem of using the graph of continuous 

compounding in the phase plane (Figure 4) to construct a graph of the value of the 
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account over time from an initial investment of $500. The two students worked this 

problem in separate teaching episodes, with Derek's episode occurring chronologically 

first.  

Derek solved the problem immediately, saying "as long as your the money in your 

account is growing then so will the rate of growth will grow so then it will just keep 

going up," and when asked to draw a graph of the first two seconds of the account, he 

drew the graph in Figure 5. Although Derek's solution shows chunking at one and two 

seconds, the verbal explanation that Derek gave while generating the graph was pure 

smooth variation with no indication of a unit. Both are the hybrid and the pure smooth 

approaches generate correct solutions to the problem. 

[Figure 5 about here] 

In asking Derek to elaborate on his solution, the qualitative (pre-numerical) nature 

of the reasoning becomes more apparent in Table 7. Derek imagined that as time was 

passing, the amount of money in his account was increasing. Since the rate of growth of 

the account was tied to the amount of money in his account, Derek imagined the rate of 

growth of the account was also increasing, so the account was growing "faster and 

faster." As the account grew faster and faster, Derek imagined that the rate of change --- 

still tied to the account --- was also growing faster and faster. All of this occurred in the 

present time. Derek was imagining the account time passing as he was giving his 

explanation, and he was tracking time, account value, and account rate as time was 

passing, in the present tense, for both him and the account. This smooth, qualitative 

image of an account growing faster and faster as time passed both conceptually and 

experientially is what informed Derek's sketch in Figure 5. 
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[Table 7 about here] 

Tiffany and the phase plane 

Despite appearances, the method that Derek used to solve the phase plane 

problem is not simple or easy. The sophistication of Derek's solution and the critical 

importance of imagining experiential change in progress to such a solution can be seen in 

Tiffany's work on the same problem. 

Tiffany's work with the phase plane followed Derek's and I attempted to teach her 

Derek's method of solving the phase plane by asking her to use the previously learned 

fingertool method of coordinating changing quantities on a graph (Lima et al., 2009; 

Thompson, 2002) However, Tiffany was having difficulty coordinating three quantities at 

once (the dollar amount, the year, and the dollar per year rate), so we began by 

coordinating finger positions over regular time increments (Table 8).  

[Table 8 about here] 

As the session progressed, I pushed Tiffany to think in smaller and smaller time 

increments and become more and more qualitative (less reliant on explicit numbers) in 

her judgments (Table 9), with the goal of her eventually moving and thinking 

continuously5 (Table 10).  

[Table 9 about here] 

[Table 10 about here] 

Immediately after Tiffany described a "single steady movement" in line 4 of 

Table 10, I asked her to sketch a graph of the first three second of the account. Rather 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5	  This	  turned	  out	  to	  be	  much	  more	  difficult	  than	  anticipated	  (see	  Castillo-‐Garsow	  
(2010)	  for	  a	  listing	  of	  the	  few	  times	  Tiffany	  successfully	  thought	  continuously),	  and	  
finding	  successful	  ways	  to	  cause	  students	  thinking	  in	  chunks	  to	  instead	  imagine	  
smooth	  change	  is	  an	  area	  of	  research	  that	  I	  am	  actively	  engaged	  in.	  
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than continue with the thousandths of a second single steady movement reasoning, 

Tiffany interpreted the problem as being about three iterated one second chunks saying, 

"Start with there, and then after that first three second. Oooh. Three seconds. We're not 

thinking of hundredths of seconds. That's gonna be like err after one second." She drew 

the graph in Figure 6. 

[Figure 6 about here] 

When asked to think in smaller increments, Tiffany repeated the unit-by-unit 

reasoning described in Table 9 drawing additional points based only on the local 

relationship between that point and the previous point giving no overall sense of what the 

graph might look like if the all the points were filled in (Figure 7). She described the 

overall function as "jagged" (Table 11).  

[Table 11 about here] 

Tiffany's solution to the phase plane problem (Figure 7, Table 11) shows both the 

mathematical and conceptual limitations of partitioning. Mathematically, no matter how 

small something is partitioned, the partitioning (the rational numbers) can never fill in the 

entirety of the real line. Conceptually, the act of partitioning entails that there be 

something between the partitions that is not being partitioned. Tiffany was always aware 

of this stuff between the partitions and represented it as holes in her graph (Figure 6, 

Figure 7). Even in the case where Tiffany described a "smooth steady movement" Tiffany 

was still aware of the jumpiness of the movement (Table 10, line 4). She said the 

jumpiness would be too small to see, implying that she was still aware of its presence. 

And so I claim that no amount of partitioning can ever achieve "all," but rather a mixture 

of partitioning (chunky reasoning) supported by smooth variation is necessary to achieve 
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an image of "all." A recursive distributive partitioning scheme that supports any but no 

particular partitioning may rely on a coordination between distributive partitioning and 

experiential change in progress, but a conception of intensive quantity that incorporates 

"a variable state that symbolizes all comparisons" certainly requires smooth variation. 

Chunky and smooth proportion 

Another (brief) example of the distinction between partitioning and reasoning 

about "any" or "all" cases comes from the following excerpt from a high school Algebra I 

teacher (Table 12).  

[Table 12 about here] 

Steffe et al. comment that "But no matter how many particular partitions are 

chosen, collectively they are not sufficient to establish the concept of density... so that 

any but no particular partition can be conceptualized to establish ratios equivalent to one 

gram of water per cubic centimeter" (pp. 18, this volume). In the Augusta example (Table 

12), the teacher is hitting a similar problem of trying to teach an concept of rate for "any" 

change in x from examples of particular partitions. But this is impossible. Augusta 

describes acts of partitioning one lines 1 & 2, but these lines do not establish the value of 

the ratio necessary to answer the question about "any" in the way that she wanted it to be 

answered. It is not until she gives the value of the ratio on line 3 that the students are able 

to respond. 

The two different meanings of proportion (partitioning and constant multiple) that 

Augusta juggles in this example are illustrative of the distinction between two ways of 

imagining proportion that I call chunky proportion and smooth proportion. Chunky 

proportion is based on coordinating partitioning of the variables that make up the 
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proportion, as Augusta does on lines 1 & 2. It establishes equivalent ratios by using tools 

that function for any proportion but do not identify the proportion itself (the value of the 

ratio). In the case of Augusta's question, a chunky proportion is imagining that whenever 

the change in x is partitioned into some number of pieces (ex: a third of the change in x), 

the change in y is partitioned into the same number of pieces as the change in x (ex: a 

third of the change in y), true of all proportions.  

In contrast, a smooth proportion imagines the variables changing continuously in 

experiential time through all possible values and looks for a relationship unique to that 

proportion: the functional constant multiple from one variable to the other, or constant 

ratio between changing variables. In the case of Augusta's question, a smooth proportion 

would be imagining that as the change in x (itself a variable) changes through all possible 

values, the variable change in y is always -3.1 times as large as the variable change in x, 

true of this particular proportion. 

Discussion 

The case of Tiffany, the high performing Algebra II student with only chunky 

thinking shows that neither smooth thinking nor advanced chunky thinking (involving 

three levels of units) is necessary for success in high school mathematics (as defined by 

measures such as grades on tests). But success in high school mathematics is not the same 

thing as an understanding suitable for undergraduate mathematics used in the sciences 

and engineering (calculus and differential equations).  

The case of Derek who had both smooth thinking and advanced chunky thinking 

shows the importance of both of these ways of reasoning in higher mathematics and in 

school mathematics. In particular, Derek's smooth reasoning enabled him to work with 
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both undergraduate topics such as differential equations and high school topics such as 

speed and the partitioning of .6 more quickly and more easily than Tiffany. If leaving the 

door open for students to take and do well in undergraduate level math and sciences 

classes is a concern, then more research is needed in how to a) help students see and 

make use of opportunities for smooth thinking, and b) prevent students from becoming 

like Tiffany and losing track of the role of sensorimotor experience in mathematics in the 

first place. 

Also note that what Tiffany was missing was not a sophisticated or advanced idea 

such as Thompson's smooth variation over recursive partitions, but rather the basics of 

pure smooth reasoning applied to mathematics. This is particularly notable in the speed 

discussion, where Tiffany, a student who drives, does not recognize the need to reflect on 

her own sensorimotor experience of driving as a way to answer a mathematics question. 

Although Tiffany was missing the third level of units, simply operating at two levels of 

units does not explain her difficulties with the speed questions. What students need is 

tools of both chunky (counting, iterating, partitioning) and smooth reasoning (including 

reflecting on sensorimotor experience) coordinating and supporting each other in the 

development of more advanced schemes (such as Thompson's recursive hybrid variation).  

The case of Augusta shows the importance of treating smooth thinking and 

advanced chunky thinking separately, and not assuming that a student having one 

necessarily entails the student having the other. 

Steffe et al. cite Thompson's definition of quantity as " as a scheme consisting of 

an object concept, a property of that object concept, and an appropriate unit with which to 

measure that property" (Thompson (1994) as cited by Steffe et al. this volume). They 
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further quote Thompson in a personal communication describing the limitations of this 

definition of quantity in that it "does not make explicit that object concepts and their 

properties are constructed, that those constructions are most often nontrivial and highly 

problematic for children, and that the idea of measure is at heart proportional" 

(Thompson (personal communication) as cited by Steffe et al.).  

I interpret this second quote as emphasizing the importance of images (Piaget, 

1967; Thompson & Thompson, 1992) in quantitative reasoning: that developing a 

quantity requires developing an image of the object and its property. In the case of 

intensive quantities especially, successful construction of the quantity requires building a 

smooth, dynamic (experiential time) image of the object and its property prior to 

quantification. For example, Steffe et al. note that the decision to establish the ratio as a 

definition of density on "an intuition of density." (p. 18) I claim that developing an 

"intuition of density" depends upon the development of this type of smooth reasoning. 

What we have in Steffe et al.'s paper is a meticulously detailed account of how 

chunky schemes of fraction, ratio, rate, and intensive quantity develop. What we need to 

fill in the gaps that Steffe et al. identify and to account for the behavior of students like 

Derek is a similarly detailed account of how smooth schemes (schemes that might fall in 

the smooth category) of the same topics develop and contribute to Steffe's chunky 

schemes. 

There are already some candidates for ideas that may be developed though future 

research into schemes of operations that describes types of smooth reasoning. With 

further development, smooth proportion may become a theoretical tool with similar 

explanatory power to Steffe et al.'s schemes of fraction and rate. Steffe et al.'s definition 
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of extensive quantitative variable  as "the potential result of measuring a varying but 

unknown extensive quantity at any but no particular time" (p. 4, this volume) may also 

either be a smooth scheme or rely on a smooth scheme, particularly in imagining a 

"varying [present tense] but unknown extensive quantity" prior to imagining the potential 

result at any but no particular time. Additionally, in a personal communication, Steffe has 

suggested the possibility of three levels of smooth reasoning based on interiorization. I do 

not yet have the data to support this level of detail, but encourage Steffe to continue this 

line of thinking if he does. 

Another candidate with potential to become a scheme is Johnson's notion of 

intensity of change (Johnson, 2012). Documented cases of smooth reasoning such as 

Derek (Castillo-Garsow, 2010, 2012), Hannah (Johnson, 2012), and Zac (Moore, 2010, 

2012) have so far all used very similar language when describing rates that seem to have 

origins in describing smooth images in terms of intuitistic notions of speed (increasing 

faster, increasing slower) that Johnson calls intensity of change. I would very much like 

to see a further development of this idea that identifies the origins and consequences of 

this type of language as part of a sequence of smooth and hybrid schemes. 

Johnson's ideas provide a good starting point, but there is no current work that 

explains and predicts the behavior of students like Derek, Hannah, or Zac to the level that 

Steffe et al.'s work in chunky schemes is capable of. Smooth reasoning is a currently 

untapped resource for schemes, and investigating students from this perspective has great 

potential for building epistemic algebra students that we would not otherwise create. 

References 



BESIDE	  THE	  ITERABLE	  UNIT	   	  
	  
	  

25	  

Bishop, S. and John, A. (2008). Teaching High School Students Parametric Functions 

Through Covariation. Master’s thesis, Arizona State University. 

Bohnemeyer, J. (2010). The language-specificity of Conceptual Structure: Path, Fictive 

Motion, and time relations. In B. C. Malt & P. Wolff (Eds.), Words and the mind: 

How words encode human experience. Oxford University. 

Carlson, M. P. and Bloom, I. (2005). The Cyclic Nature of Problem Solving: An 

Emergent Multidimensional Problem–Solving Framework. Educational Studies in 

Mathematics, 58(1):45– 75. 

Castillo-Garsow, C. W. (2010). Teaching the Verhulst model: A teaching experiment in 

covariational reasoning and exponential growth. Unpublished doctoral 

dissertation, Arizona State University, Tempe, AZ. 

Castillo-Garsow, C. W. (2012). Continuous quantitative reasoning. In R. Mayes, R. 

Bonillia, L. L. Hatfield, & S. Belbase (Eds.), Quantitative reasoning and 

mathematical modeling: A driver for stem integrated education and teaching in 

context. Wisdome monographs (Vol. 2). Laramie, WY: University of Wyoming 

Press. 

Confrey, J., & Smith, E. (1994). Exponential functions, rates of change, and the 

multiplicative unit. Educational Studies in Mathematics, 26 (2), 135–164. 

Confrey, J., & Smith, E. (1995). Splitting, covariation, and their role in the development 

of exponential functions. Journal for Research in Mathematics Education, 26 (1), 

66–86. 

Glasersfeld, E. v. (1996, September). The conceptual construction of time. In Mind and 

time. Neuchatel. 



BESIDE	  THE	  ITERABLE	  UNIT	   	  
	  
	  

26	  

Johnson, H. L. (2012). Reasoning about variation in the intensity of change in covarying 

quantities involved in rate of change. Journal of Mathematical Behavior, 31 (3), 

313 – 330. 

Lima, S., McClain, K., Castillo-Garsow, C. W., & Thompson, P. W. (2009). The design 

of didactic objects for use in mathematics teachers’ professional development. In 

S. Swars, D. Stinson, & S. Lemons-Smith (Eds.), Proceedings of the 31st annual 

meeting of the North American chapter of the international group for the 

psychology of mathematics education. Atlanta, GA: Georgia State University. 

Moore, K. C. (2010). The role of quantitative reasoning in precalculus students learning 

central concepts of trigonometry. Unpublished doctoral dissertation, Arizona State 

University. 

Moore, K. C. (2012). Coherence, quantitative reasoning, and the trigonometry of 

students. In R. Mayes, R. Bonillia, L. L. Hatfield, & S. Belbase (Eds.), 

Quantitative reasoning and mathematical modeling: A driver for stem integrated 

education and teaching in context. Wisdome monographs (Vol. 2). Laramie, WY: 

University of Wyoming Press. 

Piaget, J. (1954). The construction of reality in the child. New York: Basic Books. 

Piaget, J. (1967). The child’s conception of space. New York: W. W. Norton. 

Piaget, J. (1969). The child’s conception of time. New York: Ballantine Books. 

Saldanha, L., & Thompson, P. W. (1998). Re-thinking co-variation from a quantitative 

perspective: Simultaneous continuous variation. In S. B. Berensah & W. N. 

Coulombe (Eds.), Proceedings of the annual meeting of the psychology of 



BESIDE	  THE	  ITERABLE	  UNIT	   	  
	  
	  

27	  

mathematics education --- North America. Raleigh, NC: North Carolina State 

University. 

 

Steffe, L. P., Liss II, D. R., & Lee, H. Y. (in-press). On the Operations that Generate 

Intensive Quantity. In placeholder. placeholder. 

Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying 

principles and essential elements. In R. Lesh & A. E. Kelly (Eds.), Research 

design in mathematics and science education (pp. 267–307). Hillsdale, NJ: 

Erlbaum. 

Thompson, A. G., & Thompson, P. W. (1996). Talking about rates conceptually, part II: 

Mathematical knowledge for teaching. Journal for Research in Mathematics 

Education, 27 (1), 2–24. 

Thompson, P. W. (1994). The development of the concept of speed and its relationship to 

concepts of rate. In G. Harel & J. Confrey (Eds.), The development of 

multiplicative reasoning in the learning of mathematics (pp. 181–234). Albany, 

NY: SUNY Press. 

Thompson, P. W. (2002). Didactic objects and didactic models in radical constructivism. 

In K. Gravemeijer, R. Lehrer, B. van Oers, & L. Verschaffel (Eds.), Symbolizing 

and modeling in mathematics education. Dordrecth, The Netherlands: Kluwer. 

Thompson, P. W. (2008a). Conceptual analysis of mathematical ideas: Some spadework 

at the foundation of mathematics education. In O. Figueras, J. L. Cortina, S. 

Alatorre, T. Rojano, & A. Sepulveda (Eds.), Proceedings of the annual meeting of 



BESIDE	  THE	  ITERABLE	  UNIT	   	  
	  
	  

28	  

the international group for the psychology of mathematics education (Vol. 1, pp. 

45–64). Morelia, Mexico: PME. 

Thompson, P. W. (2008b). One approach to a coherent K-12 mathematics. Or, it takes 12 

years to learn calculus. Paper presented at the Pathways to Algebra Conference. 

Mayenne, France. 

Thompson, P. W. (2013). In the absence of meaning. In K. Leatham (Ed.), Vital 

directions for mathematics education research. New York: Springer. 

Thompson, P. W., & Thompson, A. G. (1992). Images of rate. San Francisco, CA. 

Thompson, P. W., & Thompson, A. G. (1994). Talking about rates conceptually, part I: A 

teacher’s struggle. Journal for Research in Mathematics Education, 25 (3), 279–

303. 

	   	  



BESIDE	  THE	  ITERABLE	  UNIT	   	  
	  
	  

29	  

Table	  1	  
	  
Excerpt	  from	  discussion	  of	  simple	  interest	  
	  
1	   TIFFANY	   So	  if	  you	  do	  a	  quarter	  of	  a	  year,	  or	  you	  just	  take	  three	  12ths	  —	  

literally,	  a	  quarter	  of	  a	  year,	  
	  

2	   TIFFANY	   then	  you	  should	  get	  the	  same	  thing.	  
3	   TIFFANY	   And	  then	  the	  one	  quarter	  we’re	  just	  looking	  at	  a	  quarter	  of	  a	  

year.	  
4	   TIFFANY	   We’re	  not	  really	  looking	  specifically	  at	  months	  or	  days	  or	  

anything.	  
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Table	  2	  
	  
Excerpt	  from	  discussion	  of	  speed 
	  
1	   PAT	   If	  I’m	  going	  sixty-‐five	  miles	  per	  hour	  what	  does	  that	  mean?	  
2	   TIFFANY	   In	  one	  hour,	  you’ve	  gone,	  you	  should	  have	  gone	  sixty-‐five	  

miles.	  
	   	   (Approximately	  3	  minutes	  of	  instruction	  in	  partitioning	  

omitted)	  
3	   PAT	   Can–	  can	  I	  travel	  for	  just	  one	  second	  at	  sixty-‐five	  miles	  per	  

hour?	  
4	   TIFFANY	   No	  you	  have	  to	  do	  —	  you	  would	  have	  to	  do...	  um...	  Well	  yeah	  

you	  could.	  
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Table	  3	  
	  
Excerpt	  from	  discussion	  of	  speed	  
	  
1	   CARLOS	   So	  let’s	  imagine	  that	  I	  was	  driving	  a	  car,	  umm,	  at	  45	  miles	  an	  

hour	  and	  I	  did	  that	  for	  fifteen	  minutes.	  When	  those	  fifteen	  
minutes	  were	  up,	  umm,	  I	  speeded	  up	  to	  sixty-‐five	  miles	  an	  
hour.	  How	  fast	  was	  I	  driving	  in	  the	  first	  minute?	  
	  

2	   TIFFANY	   You	  would	  have	  to	  convert	  the	  45	  miles	  per	  hour	  into	  miles	  
per	  minute.	  Sorry,	  or	  feet	  would	  it	  be	  ffff-‐	  no	  cause	  you	  want	  to	  
know	  how	  many	  miles	  right	  you’ve	  gone	  in	  the	  first	  minute?	  
	  

3	   CARLOS	   No	  I	  wanted	  to	  know	  how	  fast	  I	  was	  driving.	  
4	   TIFFANY	   Oh	  how	  fast.	  Oh	  [laugh]	  umm,	  well	  you’re	  still	  driving	  forty	  five	  

miles	  an	  hour	  in	  the	  first	  minute.	  	  
	  

	   	  



BESIDE	  THE	  ITERABLE	  UNIT	   	  
	  
	  

32	  

Table	  4	  
	  
Excerpt	  from	  discussion	  of	  compound	  interest	  
	  
1	   TIFFANY	   Point	  six	  years?	  

	  
2	   TIFFANY	   Uh	  kay...,	  well	  we	  would	  have	  to	  figure	  out	  how	  much	  of	  the	  

year	  that	  really	  is.	  
	  

3	   TIFFANY	   Well	  six	  tenth’s	  of	  a	  year.	  Like	  we	  could	  figure	  out	  how	  many	  
quarters	  that	  is	  or	  something	  and	  then	  so	  the	  same	  type	  of	  
thing...	  
	  

4	   TIFFANY	   Like	  if	  it’s	  just	  point	  six,	  I	  don’t	  know	  right	  now	  I	  don’t	  know	  
how	  much	  of	  a	  year	  oops	  that	  really	  is.	  	  
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Table	  5	  
	  
Excerpt	  from	  discussion	  of	  compound	  interest	  
	  
1	   DEREK	   You’d	  bring	  it	  down	  to	  point	  five.	  
2	   CARLOS	   OK,	  so	  I	  bring	  it	  down	  to	  point	  five,	  and	  what	  does	  that	  tell	  me?	  
3	   DEREK	   It	  gives	  you,	  uh	  whole	  number,	  that	  you	  can	  put	  into	  n	  
4	   CARLOS	   OK,	  which	  is...	  
5	   DEREK	   Two.	  
6	   CARLOS	   Two,	  cause	  point	  five,	  is	  half	  a	  year,	  it’s	  two	  quarters.	  
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Table	  6	  
	  
Excerpt	  from	  discussion	  of	  compound	  interest	  
	  
1	   DEREK	   It’d	  be	  going	  by	  eight	  percent	  of	  five	  hundred	  until	  it	  gets	  a	  

quarter	  of	  the	  year.	  
2	   DEREK	   Then,	  so	  it’s	  getting	  eight	  percent	  of	  five	  ten	  for	  a	  quarter	  of	  

the	  year.	  
3	   DEREK	   And	  then	  eight	  percent	  of	  that	  for	  a	  quarter	  of	  the	  year	  and	  

eight	  percent	  of	  that	  for	  a	  quarter	  of	  the	  year.	  
4	   CARLOS	   And	  what	  is	  it	  doing	  in	  between?	  
5	   DEREK	   In	  between	  it’s	  growing	  at	  the	  rate	  just	  for	  that	  quarter	  of	  a	  

year.	  
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Table	  7	  
	  
Excerpt	  from	  discussion	  of	  phase	  plane	  
	  
1	   CARLOS	   You	  know	  the	  rate	  is	  growing	  and	  so	  can	  you	  show	  me	  how	  the	  

money	  is	  your	  in	  your	  account	  is	  growing?	  
2	   DEREK	   Umm	  on	  that	  axis?	  
3	   CARLOS	   By	  moving	  your	  finger	  along	  this	  axis	  yeah	  
4	   DEREK	   Like	  starts	  slow	  and	  then	  just	  keeps	  getting	  faster	  and	  faster	  
5	   CARLOS	   OK,	  umm	  and	  what	  about	  the	  rate	  of	  growth?	  
6	   DEREK	   It	  would	  also	  start	  slow	  and	  keep	  getting	  faster	  and	  faster.	  
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Table	  8	  
	  
Excerpt	  from	  discussion	  of	  phase	  plane.	  Tiffany	  is	  moving	  her	  fingers	  along	  the	  phase	  plane	  
(dollar	  amount	  and	  dollar	  per	  year	  rate)	  while	  she	  instructs	  Carlos	  on	  how	  to	  move	  his	  
fingers	  on	  the	  time	  graph	  (years	  and	  dollar	  amount)	  
	  
1	   TIFFANY	   So,	  and	  now	  I	  am	  at	  like	  five	  hundred	  and	  ten	  I’m	  still	  earning	  

the	  forty	  dollars.	  
2	   CARLOS	   OK	  
3	   TIFFANY	   So	  now,	  like,	  so	  five	  hundred	  and	  ten	  if	  I	  moved	  another	  

quarter	  of	  the	  year	  
4	   CARLOS	   So	  I	  move	  a	  quarter	  of	  a	  year	  
5	   TIFFANY	   That	  would	  be	  five	  hundred	  and	  twenty	  dollars	  
6	   CARLOS	   So	  I	  move	  to	  five	  hundred	  and	  twenty	  dollars	  
7	   TIFFANY	   OK	  
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Table	  9	  
	  
Excerpt	  from	  discussion	  of	  phase	  plane.	  Tiffany	  is	  moving	  her	  fingers	  along	  the	  phase	  plane	  
(dollar	  amount	  and	  dollar	  per	  year	  rate)	  while	  she	  instructs	  Carlos	  on	  how	  to	  move	  his	  
fingers	  on	  the	  time	  graph	  (years	  and	  dollar	  amount)	  
	  
1	   CARLOS	   And	  then	  when	  a	  second	  goes	  by	  how	  much	  should	  I	  move	  my	  

finger?	  
2	   TIFFANY	   A	  little	  bit	  higher	  than	  what	  you	  were	  and	  then	  a	  little	  bit	  

higher	  
3	   TIFFANY	   So	  another	  second	  goes	  by	  then	  you’re	  gonna	  be	  moving	  a	  little	  

bit	  more	  than	  before.	  	  
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Table	  10	  
	  
Excerpt	  from	  discussion	  of	  phase	  plane.	  
	  
1	   CARLOS	   In	  thousandths	  of	  seconds	  could	  you	  see	  the	  jumpiness?	  
2	   TIFFANY	   I	  don’t	  think	  so	  it	  would	  just	  look	  like	  a	  movement.	  
3	   CARLOS	   OK.	  
4	   TIFFANY	   A	  single	  steady	  movement.	  Cause	  if	  you	  couldn’t	  see	  it	  cause	  

that’s	  really	  small.	  [laugh].	  	  
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Table	  11	  
	  
Excerpt	  from	  discussion	  of	  phase	  plane.	  
	  
1	   CARLOS	   Now	  how	  would	  you	  fill	  in	  what’s	  going	  on	  in	  between?	  
2	   TIFFANY	   I	  think	  like	  we’re	  going	  take	  this	  use	  that	  and	  then	  we	  take	  that	  

and	  we	  use	  it	  meaning	  all	  of	  that	  to	  get	  uh	  that	  and	  then	  we	  
just	  all	  the	  way	  up	  to	  here.	  

3	   CARLOS	   OK,	  so	  what	  would	  it	  look	  like?	  
4	   TIFFANY	   Kind	  of,	  where	  it’s	  always	  kinda	  like	  going	  up	  till	  you	  get	  to	  the	  

end	  kinda	  thing	  umm	  like	  kinda	  jagged	  kinda	  like.	  	  
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Table	  12	  
	  
Excerpt	  from	  discussion	  of	  point	  slope	  form	  of	  a	  line.	  
	  
1	   AUGUSTA	   How	  much	  should	  y	  change	  for	  each	  change	  in	  x?	  Well	  we	  said	  

in	  half	  the	  time	  we	  would	  expect	  half	  the	  distance.	  If	  I	  triple	  my	  
time	  frame	  I	  would	  expect	  to	  triple	  my	  distance.	  Kay?	  

2	   AUGUSTA	   Well	  however	  much	  I	  change	  my	  x	  value,	  whether	  it	  is	  by	  half	  
or	  by	  triple	  three,	  however	  much	  I	  change	  that	  x	  value	  how	  
would	  you	  expect	  your	  y	  value	  to	  change?	  

3	   AUGUSTA	   If	  the	  rate	  of	  change	  is	  negative	  3.1	  
4	   STUDENTS	   Negative	  3.1	  
5	   AUGUSTA	   Yes!	  Negative	  3.1	  times	  as	  much.	  
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Figure	  1	  .	  Derek’s	  graph	  of	  the	  compound	  interest	  function:	  linear	  growth	  where	  every	  quarter	  

of	  a	  year	  (horizontal	  axis)	  the	  investment	  grows	  at	  a	  new	  rate	  and	  the	  graph	  changes	  slope.	  
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Figure	  2	  .	  Tiffany’s	  equations	  for	  the	  compound	  interest	  account	  showing	  both	  the	  piecewise	  

linearity	  and	  the	  traditional	  geometric	  compound	  interest	  formula	  that	  emerges.	  Her	  bounds	  

for	  each	  piece	  of	  the	  function	  were	  written	  elsewhere.	  Derek’s	  equations	  were	  similar.	  
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Figure	  3	  .	  Derek’s	  graph	  of	  compound	  interest	  in	  the	  phase	  plane,	  showing	  that	  the	  rate	  of	  

growth	  is	  constant	  over	  each	  compounding	  interval	  and	  that	  the	  account	  earns	  more	  money	  in	  

each	  compounding	  interval.	  
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Figure	  4	  .	  Derek’s	  graph	  of	  continuous	  compounding	  interest	  in	  the	  phase	  plane. 
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Figure	  5	  .	  Derek’s	  solution	  to	  the	  phase	  plane	  problem,	  drawn	  in	  two	  motions.	  
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Figure	  6	  .	  Tiffany’s	  solution	  to	  the	  phase	  plane	  problem,	  drawn	  over	  the	  first	  three	  seconds	  of	  

the	  account.	  
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Figure	  7	  .	  Tiffany	  fills	  in	  one	  second	  point	  by	  point	  using	  local	  information	  only. 

 

 


