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THE RECENT EMERGENCE OF SEVERE ACUTE RESPIRATORY

syndrome (SARS) has drawn attention to the strategies of
isolation and quarantine (I&Q) as a method of disease
control. The fundamental dilemma associated with the
implementation of I&Q is how to predict the population-
level efficacy of individual quarantine: Which and how
many individuals need to be quarantined to achieve effec-
tive control at the population level? Although some forms
of I&Q have proven effective in SARS,1,2 they are not
appropriate for all infectious diseases. Diseases like vari-
cella, for which costs of quarantine may be high (many
work and school days are lost when noninfected contacts
are kept at home) and the return minimal (a relatively
mild disease is avoided), require a different approach. Fur-
thermore, in some cases, I&Q may be not only costly but
harmful. An I&Q policy for varicella, in the long run, may
actually increase the average age (and therefore the sever-
ity) of first infection. Using I&Q to control rubella in
China could actually lead to higher levels of disease
because under the current system (of no control), about
97% of the population has rubella antibodies obtained
from direct exposure to infectious individuals.2 Such a
level of natural immunity would be impossible to accom-
plish under the current effective US and Canadian vaccina-
tion policies.

Mathematical modeling can help determine when I&Q
are the best strategies for disease control as well as how they
might affect short- and long-term disease dynamics. Math-
ematical modeling offers ways of integrating population-
level knowledge based on previous epidemics with avail-
able individual and population data to predict the outcomes
of several alternative scenarios. This kind of mathematical
epidemiology is particularly well suited to problems for which
formal experimentation is impossible for logistical or ethi-
cal reasons. In these situations, mathematical models can
play a role in planning and experimental design in epide-
miology, ecology, and immunology.

Mathematical disease modeling is an attempt to fit em-
pirical data to abstract processes. Decisions must always be
made about which variables to exclude from the model. Al-
though inclusion of more variables (for example, the base-
line health status of every individual) would make the model
more accurate, such models would be impossibly com-
plex. The balance between predictive power and its level of
detail depends on the questions the model is intended to
answer. Variables that can influence the outcome of I&Q
policies include the number of contacts an infected person
has per unit of time, the probability of infection per con-
tact, and the proportion of the population that is vacci-

nated, quarantined, isolated, or educated to avoid infec-
tion. In general, it is difficult to judge the effects and
interactions of these variables at the population level. A simple
model is usually mathematically “tractable” (ie, easy to ma-
nipulate and to calculate outcomes for), thus allowing the
entire range of possible outcomes to be studied. Addition
of detail and complexity can make models more accurate,
but this also complicates their mathematics. Current com-
puter technology, however, allows studies of extremely de-
tailed models.

We developed a model to predict whether I&Q could stop
the spread of SARS in greater Toronto, Ontario.1,2 We lim-
ited the time frame of the model to the duration of a single
SARS outbreak. The simplicity of the question and the sim-
plicity of our assumptions reduced the amount of data re-
quired to test the SARS model. Our “simple” SARS model
has about 11 parameters. Obviously, completely accurate
and specific predictions from such a model were impos-
sible, but the model was able to illustrate the power of I&Q
as control measures. The model predicted that these poli-
cies would help and showed how dramatically they could
reduce the size of a SARS outbreak (by a factor of 1000).
These results agreed with actual observations.1,2 Models can
provide rapid estimates of the impact of control strategies
even before data from other areas are available (before epi-
demic spread occurs) and when experimental data may be
incomplete or inaccurate.

Mathematical models are frequently represented by a
box diagram showing the categories of persons the model
addresses (boxes), the movement between categories as
the disease progresses (arrows), and the mathematical
rates at which this movement occurs (formulas on
arrows). An example for the SARS model is provided
below. There are 5 categories of persons: susceptible (S),
capable of catching the disease; exposed (E), infected with
the disease but in a latent state; infectious (I), capable of
infecting others but undiagnosed; infectious and diagnosed
(J); and recovered (R).

In this model, �i represents the (per capita) recovery rate
(ie, the movement from one of the infected categories, I or
J, to recovered, R); � is the (per capita) SARS-induced death
rate (ie, the movement from I or J out of the system); �(t)
is the time-dependent (per capita) diagnosis rate (ie, the
movement from I to J), and l(t), �, and q are coefficients
representing estimates of how much contact exists be-
tween persons and how infectious they are. These coeffi-
cients therefore determine how quickly movement from S
to E occurs. l(t) is the time-dependent reduction in infec-
tiousness from isolation, � is the transmission coefficient
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(the expected number of contacts per unit of time per per-
son that result in an infection), and q measures the relative
infectiousness of individuals who are in a latent state.

A fundamental concept of mathematical epidemiology
is that a “threshold” can be identified. The basic reproduc-
tive number, R0, a dimensionless quantity, introduced in
the early 20th century by Ross,3 and Kermack and
McKendrick,4,5 estimates the average number of secondary
infections generated by a typical infectious individual with
a given infection. The theory is based on the understand-
ing that a basic reproductive number greater than 1 gener-
ates an increasing number of infected persons and results
in an epidemic outbreak, while no epidemic will emerge if
R0 is less than 1. Important factors in controlling a dis-
ease’s spread can be identified by examining their effect on
R0. One of the most important contributions in mathemati-
cal epidemiology has been to show that the most impor-
tant factor in any I&Q or treatment campaign is the speed
of response. Irrespective of other measures, the longer a
case goes undiagnosed, the more likely it will be that the
infected individual will be able to spread the disease before
he or she is treated; hence, the more likely that R0 will be
greater than 1. Mathematical epidemiology provides a way
of studying and characterizing these influences in a sys-
tematic way. But devising strategies to decrease R0 is not
the only issue. Finding realistic diagnostic or isolation
strategies quickly can be difficult and costly. Theoretical
and mathematical epidemiologists have frequently
assumed a perfect world (a world in which there are no

complicating variables or random variability in behavior),
where response times are not particularly relevant, where
perfect isolation is possible, and where individuals are all
well informed and compliant with government policy.
These scenarios are simpler to model. However, it is
impossible to maintain perfect I&Q strategies in the real
world. The often irrational but predictable social aspects
associated with disease transmission and control have a
significant impact. Epidemiologists are beginning to incor-
porate more of these elements into their models, thanks to
the increased availability of powerful and inexpensive
computers. The impact of the SARS model in Toronto
provides an example of this.1,2 The addition of more realis-
tic elements, however, often requires that researchers
make unrealistic assumptions, particularly about the
nature of human interactions (social dynamics). Hence,
every theoretical and numerical result needs to be
observed cautiously until the underlying model assump-
tions are verified.

REFERENCES

1. Brown D. A model of epidemic control. Washington Post. May 3, 2003:A7.
2. Chowell G, Fenimore PW, Castillo-Garsow MA, Castillo-Chavez C. SARS out-
breaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation
as a control mechanism. J Theor Biol. 2003;224:1-8.
3. Ross R. The Prevention of Malaria. 2nd ed. London, England: John Murray;
1911.
4. Kermack WO, McKendrick AG. A contribution to the mathematical theory of
epidemics. Proc R Soc Lond B Biol Sci. 1927;115:700-721.
5. Kermack WO, McKendrick AG. Contributions to the mathematical theory of
epidemics, part II. Proc R Soc Lond B Biol Sci. 1932;138:55-83.

Figure. Box Diagram Illustrating a Mathematical Model of Outcomes of a SARS Epidemic
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